
Best Answer Prediction in Community-based Question-Answering
Services

Sunyam Bagga1 and Qianyu Liu2, Jin Guo3

Abstract— A Community-based Question-Answering (CQA)
service provides a platform for users to post their questions and
answer others’ questions. Currently, selecting the best answer
for a given question is done manually on various CQA sites
which leads to a large number of questions without a marked
best answer. In this paper, we propose a method to automate
the process of best answer selection by utilizing supervised
machine learning techniques. The most important task is that
of designing features to capture different aspects of the answer.
We evaluate our approach on a Stack Overflow dataset and
show how it would perform in practice, tackling the issue of
class imbalance that is seldom discussed in existing works.

I. INTRODUCTION

Community-based Question-Answering (CQA) services
aim to provide a collaborative environment that enables
exchange of knowledge. Registered users in such services
can directly contribute to the environment by asking or
answering questions. They can also react to questions or
answers posted by others by leaving comments, casting
upvotes or downvotes. The importance and social impact of
CQA services is evident from the heavy traffic observed on
popular CQA sites such as Yahoo! Answers, Stack Overflow,
and Quora. Since most questions receive multiple answers,
it is important to evaluate the quality of the answers and
identify the best answer among them. Moreover, other users
with similar questions rely heavily on the marked best
answer especially when they don’t have enough background
to evaluate the answers themselves, or there are too many
answers posted.

In various CQA sites, many questions are left without a
marked best answer [1]. This could be due to lack of action
from the askers, or their confusion in deciding on the best
answer. In such a scenario, people would hesitate to rely
on any answer even if there are many reasonable answers
posted. This could be detrimental to knowledge spreading.
Even worse, some CQA services remove such questions after
a period of inactivity leading to loss of knowledge. A more
reliable way to mark the best answer is to use the answer
with the most upvotes since more upvotes normally implies a
higher level of agreement among community-members. This
work, therefore, aims to recommend the answers that could
potentially receive the most upvotes. Given a question and a
set of candidate answers, our work identifies the best answer
by utilizing features from various perspectives: the textual
description of the answers, the credibility of the answerers,
the similarly between the answers and the questions and the
similarity among competing answers.

We work with Stack Overflow1 which is a domain-specific
CQA site that caters to programming related questions and
involves users ranging from novice programmers to expe-
rienced developers. Our method is able to identify the best
answer with an accuracy of 70.1%. The techniques presented
in this work can be applied to other CQA sites with minimal
effort. We also release our code2 to encourage future research
in this direction.

II. RELATED WORK

There have been several studies on CQA services in
the past. Some previous studies [2] [3] took a qualitative
approach, investigating factors that influence the selection of
best answers. They performed a large scale analysis on CQA
platforms, with little focus on building an actual predictor.
Adamic et al. [2] collected one month of Yahoo! Answers
activities, and examined the diversity and quality of questions
and answers on the platform. They attempted to predict
whether an answer would be selected as the best answer us-
ing four features and reported accuracy ranging from 69.2%
to 72.9% depending on the category forum. Blooma et al. [3]
conducted a study to investigate the factors that influence the
selection of the best answer in Yahoo! Answers by analyzing
three kinds of features: social, textual and content-appraisal
features. Furthermore, Sahu et al. [4] aimed to predict best
answers from only question-answer relationship and user
profile, and achieved an accuracy of 69.1%. They considered
the answerer’s score and her “expertise” by examining the
question-tags associated with her answers. In a related study,
Xiang et al. [5] proposed an attentive deep neural network
to predict whether an answer is “good”. They used a labeled
dataset of “good”, “bad”, and “potential” answers to evaluate
their model and reported a F1-score of 58.4%. Lastly, Tian
et al. [6] reported an accuracy of 72.3% using a set of
16 features covering answer content, answer context, and
question-answer relationship. The features used in our work
incorporates all the major categories from previous work. In
addition, we adopted word embeddings using Word2Vec [7]
to better capture the semantic information while calculating
textual-related features, and introduced user-profile features.
Word2Vec captures the semantic relationship between words
since it represents them by encoding the contexts of their
surrounding words into a continuous-valued vector.

A common theme we encountered in related studies con-
cerns the issue of class imbalance. Since there is only one

1https://stackoverflow.com/
2https://github.com/sunyam/BestAnswer Prediction/



BestAnswer for each question, majority of the answers from
CQA datasets are NonBestAnswers. However, some studies
[6] [4] [8] did not address this issue and only reported
accuracy, whereas other studies [2] [3] [5] that reported
precision/recall began with a balanced dataset. In most cases,
they undersampled the majority class at the time of data
collection, during which only the best answer and one or
two random answers for each question were selected. Clearly,
such an evaluation does not reflect the real-world scenario.
Therefore in this paper, we work toward explicitly addressing
this issue during evaluation.

III. PROPOSED APPROACH

A. Dataset

We used Stack Overflow’s pythonQuestions3 dataset, pub-
licly available on Kaggle. It contains questions tagged with
the “python” that were asked between August 2, 2008 and
October 19, 2016. The dataset consists of 607,282 questions
and 987,122 answers. We discarded questions that had less
than 3 answers (including unanswered questions) which
leaves us with 105,258 questions and 411,789 answers.
Although examining questions with fewer than 3 answers
would not be difficult, these questions do not provide suf-
ficient answer-to-answer relationship. Out of the 411,789
answers, 272,129 belong to the class NonBestAnswer and
the remaining 139,6604 belong to the class BestAnswer.

B. Word Embeddings

To compute word embeddings, we trained a Word2Vec
model on a combination of two datasets: pythonQuestions
and stackSample5. We preprocessed all posts in our dataset
using standard methods, i.e. removing tags, tokenizing and
removing stop words and punctuations. The pipeline is
shown in Fig. 1. We then train a 300-dimensional word em-
bedding model with the preprocessed dataset using python’s
Gensim library [9]. We used a context window of size 10, and
ignore all words with total frequency lower than 10. After
experimenting with both skip-gram and continuous bag-of-
words (CBOW), we found the performance to be very similar
but slightly better with the CBOW model. Therefore, we only
report the results for the CBOW case in this paper.

C. Features Description

We consider the following sets of features to predict the
best answer for a given question:
• fA captures the quality of the answer.
• fU represents information about the user who answers

the question.
• fA↔Q measures the relevance of the answer to the

question.
• fA↔A captures how the answer in consideration com-

petes with other answers to the same question.

3www.kaggle.com/stackoverflow/pythonquestions
4Note that for a question, there could occasionally be more than one best

answer if they have the same number of upvotes.
5www.kaggle.com/stackoverflow/stacksample

The complete feature set is presented in Table I. In this
section, we discuss in detail only those features that are not
self-evident from the table.

1) fA (Answer Content): This set of features aims to
transform the answer content into the feature vector. f4,
called ans len, is calculated by counting the number of
characters in the answer. f5 and f6 represent the readability
of the answer. We believe that an answer that is easily
readable is more likely to be selected as the best answer.
As done in [6], we measure readability using:

f5 : readability 1 = max
i

Li (1)

f6 : readability 2 =
1

N

N∑
i=1

Li (2)

where Li is the length of the ith paragraph in terms of num-
ber of characters, and N is the total number of paragraphs
in the answer.

2) fU (User’s Information): The two features in this set
capture information about the user who wrote the answer
Ai. We consider two aspects of the answerer: ownerScore A
describes how good she is at answering other questions,
and ownerScore Q describes how good she is at asking
meaningful questions. The rationale behind this is that a
user who is good at answering and asking questions will
be more likely to write a best answer. Note that these values
are calculated using the pythonQuestions dataset, and are not
real-time Stack Overflow user reputation.

3) fA↔Q and fA↔A: These two categories consist of
7 features in total (f9 − f15). f10 captures the ’similarity’
between the answer and question, and f11, f12, f13 capture
the ’similarity’ among the competing answers. As can be
seen in Fig. 1, we calculate the similarity using the standard
cosine similarity metric that computes the cosine of the
angle between two vectors. To convert a post into a real-
valued vector, we take the average of the word embeddings
of each word in that post. Hence in this way, each answer
and question is represented as a 300-dimensional vector of
real values.

In Fig. 1, Post A would be the question Q and Post B
would be the answer Ai when calculating f10; both posts
A and B would be answers when calculating f11, f12, f13.
Concretely, these features are calculated using the following
equations:

f10 : QA sim = sim(Ai, Q) (3)

f11 : ave ans sim =
1

num(Ak 6=i)

∑
k 6=i

sim(Ai, Ak) (4)

f12 : min ans sim = min
k 6=i

sim(Ai, Ak) (5)

f13 : max ans sim = max
k 6=i

sim(Ai, Ak) (6)

Hence after combining the four categories, our feature vector
is a 15-dimensional vector which we then feed to our
classifier.



TABLE I: Set of features for a candidate answer Ai to the question Q. Set of other answers to Q are denoted by {Ak}.
Category Index Name Description

1 url tag Number of URL tags present in Ai.
2 pic Number of illustration figures present in Ai.

fA 3 code Number of code snippets present in Ai.
4 ans len This measures the length of answer Ai.

5,6 readability This captures whether Ai is easy to read. See (1) and (2).
7 ownerScore A Number of upvotes (score) the answerer of Ai accumulated by answering other questions.

fU 8 ownderScore Q Number of upvotes (score) the answerer of Ai accumulated by asking questions.
9 timeSlot Difference between Q’s creation time and Ai’s creation time.

fA↔Q 10 QA sim Similarity between Ai and Q.
11 ave ans sim The average of similarities between Ai and {Ak}.
12 min ans sim The minimum of similarities between Ai and {Ak}.

fA↔A 13 max ans sim The maximum of similarities between Ai and {Ak}.
14 competitor num Number of other answers {Ak} to question Q.
15 ans index The order that Ai was created. For example, it was the 2nd answer to the question Q.

Fig. 1: Pipeline to compute similarity between two posts.

D. Classification

We used Random Forest [10] to predict whether a given
answer, represented by the feature vector described above, is
a best answer or not. This is essentially a binary classification
task with labels: BestAnswer and NonBestAnswer. The major
reason we selected this algorithm is because it works well
with large datasets [11] and provides an efficient way to
compute feature importances.

Each question has a set of answers, among which only one
belongs to the class BestAnswer and the remaining belong
to the class NonBestAnswer. This leads to a class imbalance
issue where there are a whole lot of examples for one class
and far less number of examples for the other class. In this
work, we experiment with two different techniques to deal
with this issue:

• Undersampling: As suggested in [12], we kept all the
BestAnswer vectors and randomly sampled the same
number of vectors from the NonBestAnswer class for
training. This results in a training set of size equal to 2
times the number of original BestAnswer samples.

• Oversampling: We used Synthetic Minority Over-
sampling Technique (SMOTE), which creates new ex-
amples of minority class using interpolation and the
k-nearest neighbors (See [13] for more details). This
results in a training set of size equal to 2 times the
number of original NonBestAnswer samples.

IV. EVALUATION

We report accuracy, F1-score, precision, recall for three
cases: (1) As-is where we make no changes to the training
set, (2) Undersamp where we undersample our training
set, and (3) Oversamp where we oversample our training
set. Note that for all three cases, we do not modify the
test set (imbalanced) since that reflects how the classifier
would perform in a real-world scenario. Random Forest was
implemented using Python’s scikit-learn library [14]. We
tuned the hyperparameters using a 10-fold cross-validated
randomized search over a predefined range of values for
different parameters. For this task, Random Forest works best
with 1000 decision trees6.

Class imbalance is an important issue that we addressed
in our study to ensure that the evaluation results reflect how
the model would perform in practice. We also want to note
that since none of the previous works explicitly address this
issue, they either used a balanced test-set or only reported
accuracy. For this reason, we believe that directly comparing
our results against existing work is not a fair comparison.

We split our dataset into training (80%) and test (20%)
sets. The prediction results of Random Forest on the test
data for all three cases is shown in Table II. As can be
seen in the table, the best accuracy we get is 70.1% for
the As-is and Oversamp case which is comparable to the
work by Tian et al. [6]. Since Tian et al. do not report any
other metrics, we can not compare them. Moreover, these
results are not directly comparable since they use a different
dataset (not publicly available) and make a different best-
answer assumption.

When working with imbalanced data, accuracy is not the
most suited metric to measure performance. Our model has
low recall in the As-is case since it misclassified many
minority-class posts as majority-class posts. In comparison,
having a balanced training set (in Undersamp and Oversamp)
contributed to a noticeable improvement in recall and F1-
score.

Finally, we used scikit-learn’s feature importances at-
tribute which uses gini impurity [15] to measure importance.

6The complete set of hyperparameters for Random Forest and Word2Vec
can be found in the README of our GitHub repository.



(a) As-is training set (b) Undersampled training set (c) Oversampled training set

Fig. 2: Distribution of feature importances for the three cases: (a) As-is (b) Undersamp (c) Oversamp.

TABLE II: Classification results for the three cases: As-is,
Undersamp, and Oversamp.

As-is Undersamp Oversamp
Precision 60.1% 48.9% 57.4%
Recall 33.6% 71.5% 43.2%
F1-score 43.1% 58.1% 49.3%
Accuracy 70.1% 65.3% 70.1%

Figure 2 shows the feature importances for the As-is, Under-
samp, and Oversamp case. It can be seen in the figure that
some features are clearly more important than other features.
Particularly, pic is the least important feature for all three
cases. The distribution is almost identical for the As-is and
the Undersamp case. All the similarity features that utilize
word embeddings are equally important (8%). The two most
important features in both these cases are owner scoreA and
ans index (about 10%). This result demonstrates that the an-
swerers’ reputation for answering other questions and when
the answers are posted could be more reliable indicators
for predicting answers receiving more upvotes. This finding
also confirms the “Matthew effect” (“for to everyone who
has, more will be given”) discussed in many social network
analysis [16]. It is surprising to see that the distribution
drastically changes for the Oversamp case. The importance
of ans index shoots up to 22% and all the similarity features
drop to less than 5%. This is perhaps due to new synthetic
training examples created by SMOTE.

V. CONCLUSIONS AND FUTURE WORK

We studied the problem of selecting the best answer given
a question and a set of candidate answers. To the best of
our knowledge, this is the first work that aims to predict
the community-decided best-answer as opposed to the best-
answer selected by the asker. Our evaluation on a relatively
large Stack Overflow dataset shows that some features are
considerably more important than others. Unlike some other
related work, we report precision, recall, and F1-score which
can be used as a baseline for future work in this field. The
results show that this seemingly trivial task is hard and
textual similarities, in particular, did not seem to improve

the performance of the classifier.
In future, we would like to incorporate more features based

on question-tags and comments made by other users. We also
plan to predict the “goodness” of the answers by formulating
this task as a ranking problem where each of the candidate
answers are ranked instead of hard binary classification.

REFERENCES

[1] L. Yang, S. Bao, Q. Lin, X. Wu, D. Han, Z. Su, and Y. Yu, “Analyzing
and predicting not-answered questions in community-based question
answering services.” in AAAI, vol. 11, 2011, pp. 1273–1278.

[2] L. A. Adamic, J. Zhang, E. Bakshy, and M. S. Ackerman, “Knowledge
sharing and yahoo answers: everyone knows something,” in WWW.
ACM, 2008, pp. 665–674.

[3] M. J. Blooma, A. Y.-K. Chua, and D. H.-L. Goh, “Selection of the
best answer in cqa services,” in ITNG. IEEE, 2010, pp. 534–539.

[4] T. P. Sahu, N. K. Nagwani, and S. Verma, “Selecting best answer:
An empirical analysis on community question answering sites,” IEEE
Access, vol. 4, pp. 4797–4808, 2016.

[5] Y. Xiang, Q. Chen, X. Wang, and Y. Qin, “Answer selection in
community question answering via attentive neural networks,” IEEE
Signal Processing Letters, vol. 24, no. 4, pp. 505–509, 2017.

[6] Q. Tian, P. Zhang, and B. Li, “Towards predicting the best answers in
community-based question-answering services,” in ICWSM, 2013.

[7] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their compo-
sitionality,” in NIPS, 2013, pp. 3111–3119.

[8] C. Shah and J. Pomerantz, “Evaluating and predicting answer quality
in community qa,” in SIGIR. ACM, 2010, pp. 411–418.

[9] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in LREC Workshop on New Challenges for NLP
Frameworks. ELRA, 2010, pp. 45–50.

[10] L. Breiman, “Random forests,” Maching Learning, vol. 45, no. 1, pp.
5–32, Oct. 2001.

[11] M. Zakariah, “Classification of large datasets using random forest
algorithm in various applications: Survey,” International Journal of
Engineering and Innovative Technology, vol. 4, pp. 189–198, 09 2014.

[12] F. Provost, “Machine learning from imbalanced data sets 101,” in AAAI
workshop on imbalanced data sets, 2000, pp. 1–3.

[13] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer,
“Smote: synthetic minority over-sampling technique,” Journal of Ar-
tificial Intelligence Research, vol. 16, pp. 321–357, 2002.

[14] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[15] L. Breiman, J. Friedman, C. Stone, and R. Olshen, Classification
and Regression Trees, ser. The Wadsworth and Brooks-Cole statistics-
probability series. Taylor & Francis, 1984.

[16] A. Marin and B. Wellman, “Social network analysis: An introduction,”
The SAGE handbook of social network analysis, vol. 11, 2011.


